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SUMMARY

h analytical and experimental investigation on pressure distri-
bution about wedges was initiated because of some problems encountered
in transpiration cooling; the results oktained are of general inter-
est and application. The analytical investigation of incompressible
flow aboat finite wedges showed that decreasing the tunnel-wedge
ratio (the t’unnel-wedgeratio is defined as ratio of tunnel height to
maximum wedge thiclmess) decreased the pressure coefficient at all
chordwise locations; an increase in wedge angle with an unbounded
stream (infinite tunnel-wedge ratio) caused a pressure coefficient
increase in the forward region and decrease in the rear region of the

. wedge. It was also fould that even for a wedge in an unbounded stream
the region af applicability of the Mtiite wedge-type velocity distri-
bution assumed in the solution of laminar boundary layer equations is

. approximated only within 10 percent for a limited leading-edge region.
Additional calculations indicated that use of a theoretical instead of
an experimental pressure distribution shoald be satisfactory for heat-
transfer predictions for regions not uniuly influenced by flow separ-
ation.

Comparison of theoretical and experimental pressure distribu-
tions about wedges in compressible subsonic flow showed poor agree-
ment for a wedge angle of 30° and a tunnel-wedge ratio of 2.8, prob-
ably because of flow separation. For wedge angles from 9° to 20° and
essentially mibounded s~reams (tunnel-wedge ratio of 100), the results
from a simple mapping Karm&n-Tsien method were in good agreement with
experiment for Mach numbers to 0.700. Ahodograph method predicted
results in good agreement with experiment for an essentially unbounded
stream, even for Mach numbers close to unity.

—

—
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INTRODUCTION
*

The question of the influence of’the tunnel wall on the pressure
distribution over a finite wedge arose in connection with some _prob- ‘F
lems encountered in obtaining heat-transfer.results for transpiration
cooling. Prediction of the coolant fl”owemitted from a porous wedge,
used as a test vehicle, necessitated knowledge of the pressure dis-

-.

tribution about the reference solid wedge. “This distribution was
obtained-by placing a 30° solid wedge with_.a2-inch chord in the tunnel
used for the porous wedge investigation. The resulting tunnel-wedge
ratio was 2.8 where this ratio is defined as the ratio of the height
of the tum.el to the maximum thickness of the wedge. Attempts were
made to correlate the data with analytical solutions available in the
literature. —

In addition to the use for transpiration cooling analyses, wedges
may be.used as the leading section oficompressor and turbine blades
and wings, and are also useful in the solution of the laminar boundary
layer equations. Experimental Mach number and pressure distributions
obtained from interferometermeasurements are given in references 1 and
2. A review of the different theories for the potential flow about
wedges in an unbounded stream is also given h reference 1. The theo-
retical effects of compressibilitymay be obtained for subsonic flow
by either the method of reference 3 or, if the incomp~essiblepressure

a=

distribution is known, by use of Praniltl-Glauertor KArm&-Tsien correc-
tions. .

For laminsr boundary layer solutions, the stream velocity in the
pctential flow is assumed to increase in proportion to some power of
the distance from the leading edge. This type of+elocity distribution
is realized in the two-dimensional, incompressibleflow about wedges
infinite in the chordwise direction with an unbounded stream, that
is, an infinite wedge with a tunnel-wedge ratio of infinity. Such
boundary layer solutions are given in references 4 to 6j references 5
and 6 give solutions for porms surfaces with large temperature dif-
ferences between the surface and the main stream. In actual practice, —.

however, only finite wedges can be used. In addition, experiments
would usually be conducted in a wind tunnel, so that the influence
of the tunnel wallon the wedge pressure distribution is important.
Hence, if results of boundary layer theory are to be correlated with
experiment, it is necessary to have an estimate of the region on a
finite wedge in a bounded stream where the infinite wedge-type flow
assumed in this theory is approximately realized. —

.
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In the present report, experimental pressure distributions were
determined and flow visualization studies were made for the 30° wedge

u with a tunnel-wedge ratio of 2.8 and upstream Mach nunibersof the order
of 0.350. Theoretical and experimental pressure distributions for the
30° wedge were used to predict the heat transfer to the wedge by the
methods of reference 7. Analytical pressure distributions for tunnel-
wedge ratios from 2.8 to 170 and wedge angles from 0° to 40° were
calculated for incompressible flow. The region of applicabilityof
the infinite wedge-type pressure distribution for a finite wedge in
a bounded stream was analyzed. Since no direct comparison of experi-
mental and theoretical pressure distributions for upstream Mach num-
bers close to unity was found h the literature, a comparison of
previously published experimental and theoretical results was also
made.

APPARATUS

Wedge

For the present experimental investigation a 30° wedge was mach-
ined from Ihconel stock. The wedge had no afterbody because of space

. limitations in the tunnel. Static-pressure taps (0.020-in. diam.) were
drilled perpendicular to the surface at three different spanwise and
various chordwise locations and connected to the ends of the wedge

. with drilled passages. lhto these passages steel tubing was silver-
soldered for attachment of the flexible tubing which led to the manom-
eter board. Rods on each end of the wedge held it in place snd acted
as pivots for orienting the wedge at zero angle of attack. The geo-
metry and pressure tap locations for the wedge are shown in table I.
The resulting tunnel-wedge ratio for this configuration is 2.83. The
pressures on the wedge were read differentially with the upstream
static pressure, the manometer fluid being water. Pressure readings
at different spanwise locations agreed within less than 1 percent for
the same chordwise location.

---——

.-

Test Facility

In the test facility, laboratory air passed successively through
a standard A.S.M.E. orifice, a cotiustion chamber, a plenum chamber
(where stagnation temperature and pressure were measured), and the test
section and into the exhaust system. For the present investigation no
fuel was added in the combustion chamber. The plenum chamber and tunnel
sections are shown in figure 1. The inlet duct to the test section.
extended into the plenum chsmiberto insure a uniform velocity profile in

.
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the test section. Care was taken in assembly of the entrance and test
sections so that no protuberances”existed in the flow passage.

The flow passage of the entrmce andt.est sections downstream of
the inlet-duct was nominally 3 inches squa—e”with four outer walls spaced
at 3/8 inch intervals to minimize heat loss for any high temperature
work (see fig. 1). The 3-inch-square cross section was maintained for
about 23 chord””lengths(46 in.) upstream of.the wedge. Stagnation pres-
sure was also measuxed with a total-pressure probe about 8 chord lengths
upstream o~the wedge. This pressure probe.was read differentially with

a wall static tap 4; chord lerigthsahead of’the wedge. The wall static

pressure was also read absolutely, the manometer fluid being water for
both the differential and absolute readings. These pressure readings
were used to calctil.atethe upstream Mach nuniber.

Flow Visualization

h an attempt to confirm the two-dimensionality of the flow about
the wedge, flow visualization studies were made. In these studies hydro-
gen sulfide gas reacted with a mixture of glycerin and lead carbonate
painted on the wedge and “sidewalls. After the.hydrogen sulfide was
introduced through static taps on the wedge-and side walls, its paths
along the wedge and on the walls were obsetied as brown traces on a white
background. More details of visualization methods for gas flow about
turbine blades are reported in reference 8.

.

T -..

.—

.

.

.

TRW PRWEDURE

Pressure taps symmetrically located closest to the leading edge on
either side of the wedge (see table I) were used to set the angle of
attack to zero. When the pressures at these taps agreed within 0.1 inch
of water, the pressure readings on the wedge were taken for the following
upstream conditions: -—

MO

0.266
.286
.328
.403
.464

Po) P’-PO)

in. water abs in..water

435.0 21.9
466.9 27.3
421.7 32.6
444.2 52.5
513.0 81.7 :

.—

T’,
OR

560
552
560
558
555 .

i
Symbols are defined in the appendix.
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.
ANALYSIS

. Analytical methods to determine the atatit-pressure distribution for
flow about finite wedges are given. The static pressure on the wedge is
incorporated b a pressure coefficient which is deftied by

N

8
u-l

.

.

P- Po
~—

CP 2
(1)

Po U()

2

For isentropic ticompressibleflow, the pressure coefficient is related
to the velocity by

()

2
CP,J=l - & (la)

For isentropic compressible flow, the pressure coefficient is related to
the Mach n~ber by

%=2
Y%2

The pressure ~adient in
form by the Euler nmiber

(lb)

the direction of
which is defined

X dp
Eu=-nm=

pu

/ J

flow is given in dimensionless
by (ref. 9)

(2)

The last equality results from Bernoulli’s equation.

The USUS+ corrections for the effects of compressibility (Prandtl-
Glauert and Karx&-Tsien methods) which apply for subsonic flow axe givenj
in addition, the theory of reference 3 for flow
unbounded stream is utilized.

ticompressibleFlow

~inite wedge, unbounded stream. - For an
. unbounded stream, the velocity variatim on the

by (ref. 4)

. u = Cxm

over a finite wedge in an

inftiite wedge in an
wedge surface is given

(3)
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Differentiation of equation (3) and use of equation (2) show that
*

m SEU. By a conformal transformation of the region outside the wedge,
it maybe shown that the exponent– m or the Euler number is related to u -:”.
the wedge angle by

e
‘U=?%m

for

This result has al.readybeen given in reference 10.

The velocity distribution givenby eqyation (3) has been used
extensively in solution of the lsminar boundary layer equations under the
assumption that-the Euler nw.?iberis constant for a given solution.

Finite wedge, bounded stresm. - h actual practice, only finite
wedges can be constructed and experiments with them would probably be
conducted h a wind tunnel. Hence the pressure distribution abou~ a
finite wedge in a finite, bounded stream must be determined. For the --
case of incompressibleflow about a finite wedge in a bounded stresm, .
recourse is made to the mapping theorem of Schwarz and Christoffel for the
theoretical approach. A general discussion of the Schwsrz-Christoffel
theorem is given in reference 11. To obtain the pressure distribution “

about a wedge centrally located in a rectangular tunnel, it is necessary
to consider only the upper half of the wedge because of flow symmetry.
The region tobe snslyzed is shown schematically in figure 2. The wedge
is assumed to have sn afterbody of infinite length to simplify the anal-
ysis. The theory, of course, precludes any separation of the flow. Ely

-.

a Schwarz-Christoffeltransformation the boundary of the flow region of
.—

the physicsl or z-plane is transformed intcrthe real axis of the
~-plane, z and ~ being complex variables The following points may
be specified:

1. The leading edge E in the z-plane shall map into the point (t)O)
in the ~-plane.

2. The trailing edge D in the z-plane shall map into the point (1,0)
in the ~-plane.

3. The infimite point &Cm in the z-plane shall map into the point

(0,0) in the ~-plane.

4. The infinite points Am snd F@
.

shall map into negative snd

positive infinity, respectively, in the ~-plane.
.
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The trmsformation from the ~-plane to the z-plane for this
can be obtained from the theorem of Schwarz aud Christoffel

.
e—

-12fi(H%=! -t
where S ad t are constants to be determined.

7

configuration
as

(5)

8 ~ the physical or z-plane the flow is from a source of output
UOa/2 at Am to a sink of intske UOa/2 at B@. In the ~-plsne this

requires a sbk of strength Uoa/2fi at the origin. The flow induced by

the sink in the ~-plane is characterizedby the complex potentisl

“

.

(6)

The complex velocity in the z-plane, being the derivative of the poten-
tial, is obtained from equations (5) and (6).

(7)

As ~--+= (Fa in the z-plane), the derivative of the potential must

give the upstream velocity U.

and the limit of the term in parentheses in

e
.z

equation (7) is given by

=1

so that S = a/2n. At ~=0 (Bm in the z-plsne), continuity consid-

dw” ‘Oa
erations require that ~ = ~. Substitution of this value for the

derivative and of ~ = O into equation (7) gives

.—

.
2’Jt

(+)

T
t=aab

-1
(8)
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Thus the constants S
angle and tunnel-wedge

The real velocity
the absolute value of
spends to the segment
~=a.

NACA TN 2942

smd t are determined as functions of the wedge
ratio.

on the wedge surface .isevaluated by ohtain~g
dw/dz on the wedge tsimface. This surface corre-
DE (fig. 2) of the re,alaxis of the ~-plane where

e (9)

for

Equation (la) is used to find the pressure coefficient for a finite wedge
in a b6unded stream

c.@ may

in the <-
numerical

e
;

()tCp,i.l - -&+-f

for

(lo)

be evsluated, therefore, when the relation between a ad x

smd z-planes is established. This relation is obtained by
integration of equation (5) as follows.

.

—.

.

“

.

Since the flow over the wedge surface in the z-plane, which maps into
the segment DE of the real axis of the ~-plane, is of interest, points
appropriately spaced between a = 1 and a =-t—-are chosen. On this
segment, {zl = x and ~ . a; so that from equation (5),

e e

.

.
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.
from which

.

N

~
m

(12)

Then x/L maybe obtained with the aid of equation (12) and the finite
difference integration formula (ref. 12, p. 243).

J
%l+ti e

la-l()
27

[da=nhl+gz3+ ‘?@@.*2+d*3+Z- b-a 12 24
%

n 6n3 - 45n2 + non - 90) ~4 + n 2n4 - 24n3 + 105n2 - 2oon+ 144) *5 +
720. 1440 .

I el

.
5

II(lh5- 210n4+428n3 -4725n2+ 7672n -5040) ~6 + 1101al-l60,480 . . .
qt-~

Tf accurate results are to be obtained from this numerical integra-
tion, the nature and behavior of the function d(x/L)/da must be known
for l~a~t. b particular, for values of a in the neighborhood of a
msximum or minimum value of d(x/L)/da, it is necessary to use smaller
vslues of n and h than those which may be used in other regions. At

maximum or minimum values of d(x/L)/da, d2(x/L)/da2 mush vanish. Dif-
ferentiating equation (11) and equating this result to zero yield the
quadratic equation in a

le
-=%a [( t -1

a- l)(t-a J (14)

If equation (14) has no real roots, d(x/L)/da
. values. If equation (14) has real roots,-kay

then d(x/L)/da increases for l~as~ to a

. decreases for ~~a~a3 to a minimum at a =

has no maximum or minimum

.—

.-
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for ~~uet, becoming Winite as u+t. Hence,

wedge configuration, ~ and U3 may be determined

if they exist, and appropriate values of n and h
equation (13) to determine

For the corresponding
use of equations (2), (9),

x/L.

Euler
(11),

;(t-1)
EU .

e
%11~
b

NACA TN 2942 —

for a given tunnel- .

from equation (14),

may be used h . —

r
nmber distribution along the wedge, ;
ud dU/dx = dU/ti/dx/da yields

Xu

r

a

ZF (a-l)(t-u) 1 (15)

Hence the Euler number maybe calculated for each value of u by use of
the results from the finite-difference calculation. At the leading edge
(the stagnation point), corresponding to a= t, the right side of equa-
tion (15) becomes indeterminate. It”cube shown, however, by use of
L’HospitsJ.’sRule that as a approaches _t, the Euler nudber approaches
the value givenby equation (4) for an infinite wedge of sngle 0 in an
unbounded stream.

An independent check of the velocities obtainedby this mapping
method was obtained for 13m 30° md a/b = 2.8 by employment of a

.

mechanical stream-filamentmethod. This method uses steel wties for the
streamlines aid the orthogonal lines.
network, the velocity ratio U/U. is

of the rectilinear square upstream of
tilinear square on the surface of the
given in reference 13. The resulting

Upon proper alinement of the wire -
given by the ratio of the length

the body to the length of the rec-
body. Details of the method sre
flow pattern for the test con-

figuration is shown in figure 3. Velocities obtained from this network
agreed within 2 percent with those calculated from the mapping method.

Finite wedge, unbounded stresm. - The flow about a finite wedge in
an unbounded stream csm be deduced in a manner similar to that used for
the bounded stream. For this conf@uration employment of the theorem of
Schwarz and Christoffel fields for the wedge surface

(16)

for
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.

and

.

so that

for

and

.

h this

;(1) =

Eu=;

transformation, x/L = O

0, so that from equation

+-

xLU1
sL~l-a2

corresponds to u = 1, that is,

(16)

-J

(17)

(18)

For evaluation of this integral sad for the inte~ation of eaua-
tion (16), the finite-difference formula (ref. 12, p.-243) is aga~n used.
As in the case of a finite wedge in abounded stream, the Euler number
given by equation (18) approaches the value given by equation (4) for an
inftiite wedge of single @ in an unbounded stream as the leading edge is
approached (a-l).

A linearized theory for the pressure distribution for incompressible
flow about a finite wedge in an unbounded stream is presented in
appendix B of reference 1. The pressure coefficient on the wedge surface
is givenby

(19)
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Because of the limitations of the linearized theory, the point of zero
.

pressure coefficient is fixed at X[L =.0.5 regardless of the wedge
angle, as is seen by equation (19). Examination of equations (16) and
(17), obtained by the mapping method, shows that Cp,i = O does not

.

—

always occur at x/L = 0.5, but its location will vary depen~ing on the N

wedge angle. ~
-u-l

Compressible Flow

Several theoretical approaches have been used to account for the
influence of compressibility on the pressure coefficient for appreciable
subsonic Mach numbers (see ref. 14). With respect to ease of utilization,
the simpler theories are the Prandtl-Glauert and Ka’~n-Tsien methods
which correct-the incompressiblepressure coefficient for Mach nmber.
The Prandtl-Glauert method gives

Cp=*“) (20)

and the Ka’rm&n-Tsienmethod gives
.

(21) “- “--–

“q’-%’
Thus the pressure coefficient for compressible flow is obtainable

if the upstream .ach number and the incompressiblepressure coefficient
sme lamwn. .

Finite wedge, bounded stresm. - The Prandtl-Glauert and Ka’$m&n-Tsien
corrections are, strictly speaking, applicable for an unbounded stream,
or at least where the interference from the tunnel wall is small, Quali-
tative estimates of the compressibility effe,cts,on the other hand, may
be obtainedby use of these methods. The Karm&n-Tsien method, rather
than the Prandtl-Glauert method, was used to investigate compressibility
effects on the experimental test configuration 6 = 30°, a/b = 2.8, since

%,i is large over most of the wedge end the Ka’$m&n-Tsiencorrection is

in better agreement with experiment in this range (ref. 14, p. 246).

Finite wedge, unbounded stream. - The pressure distribution for a
.

finite wedge in an unbounded .streammaybe obtained quite readilyby
equations (19) and (20). The resulthas already been given in .
reference 1.as
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. “=-fl&’* (22)

It is anticipated that equation (22) will become less valid when
~ is close to unity. DI this case the solution from a hodograph method

given in reference 3 also maybe utilized. The series representation of
x/L on the wedge surface given by equation (53) of reference 3 is, in
the notation of the present report,

for

N> No>O

$:~,(-l)r(:).-,(%),:(%)(24)x/L = 1 + 2N0

3

for

NO>N>O

where

and$and~are
.

kinds, respectively.

is related to ~ by
.

r . summation index

3

No = (2/3)(1 - ~2)Z
)

J

(25)

modified Bessel functions of the first and second

The modified Bessel function of the second kind ~

(ref. 12, p. 317)
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The modified Bessel function of

.

I-p(arg) - ~[arg)

Sinplr .

the first kind ~ is tabulated inref -

erence 15, so that it snd the modified Bessel .functionof the second kind

%
are obtainable. :

g

Examination of equations (23) md (24) shows that equation (23) is

for the front portion of the wedge, since here M2~~2 so that N~Noj

equation (24) is for the rear portion, since there M2>~2 so that

No ZN . With this in mind, equations (23) and (24) can be solved for x/L

by assigning values N, No, and v and calculating the modified Bessel

functions over the range of r.

In the so-called transonic approximation, the pressure coefficient
is approximatedby the relation given in
is, in the notion of the present report,

CP = & (%2

references 3, 16, and 17, which

- M2) (lC) -

Since assigned values of N and NO fix M and ~ by equa-

tion (25), Cp csn be calculated by use of equation (lc) for the hodograph

method for the finite wedge, unbounded stream. Thus Cp is calculable

for the holograph method, and by use of equation (22) C!p for linearized

subsonic flow may be calculated. These calculations may then be used for
comparison with the experimental pressure coefficients obtained from data
in reference 1.

RESULTS AND DISCUSSION

Analytical results of the incompressibleflow about finite wedges
will be presented and the effects of wedge arigle~d tunnel-wedge ratio
will be discussed. An estimate willbe made of the region of applicability
of the infinite wedge-type flow (constant Euler number) assumed in bound-
ary layer theory. Predictions of heat transfer to the 30° wedge for a
tunnel-wedge ratio of 2.83 will also be given. The results of the flow
visualization studies on the 30° test configuration as well as a compari-
son of analytical and experimental pressure distributions for this wedge .

.
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.
will be shown. Comparison between compressible theory
pressure distributions of reference 1 will be made for

.

Analytical

15

snd experimental
subsonic flow.

Effect of wedge angle. - Pressure coefficients were calculatedly
use of equation (10) for incompressible flow (~ = O) about 9°, 15°,

N and 20° wedge angles; the chordwise location corresponding to each coef-
~0 ficient was obtainedby equation (12). The tunnel-wedge configurations

are those for which experimental data are given in reference 1. For
each of these configurations the tunnel-wedge ratio is sufficiently large
that tunnel wall influence is relatively insignificsmt. The pressure
distributions for finite wedges in an unbounded stream (a/b ==) were
also calculated using equations (17) and (16). These analytical results
for incompressible flow about finite wedges are presented in figure 4 and
table II. Figure 4(a) shows a plot of computed press~e coefficient
against chordwise location for 00~6~400. Note that the location of the
zero pressure coefficient moves downstream with increasing wedge angle.
Figure 4(b), a cross plot of figure 4(a), shows the variation of the
pressure coefficient at various chordwise locations. Figure 4 indicates
that the pressure coefficient increases with increasing wedge angle over
the forward region and over the rear region the pressure coefficient
decreases with increasing wedge angle. Table II gives the analytical
results for finite wedges in unbounded, incompressible streams (a/% =m,
~=o).

The Euler numbers for the tunnel-wedge configurations were calcu-
latedly equations (15) and (18)j the results are given as figure 5.
The Euler numbers must tend to the values for infinite wedges as
x/L+Oj these values maybe calculatedly equation (4). Only in a small
region close to the leading edge does the Euler number approximate a
constant value in the flow direction, even for this case of an unbounded
stresm. Thus, if sn average Euler nuniberbe taken for each wedge angle
in the range O<x/LsO.2, the deviation from this value is QO percent
at x/L = O and x/L = 0.2, respectively. The solutions of the boundary
layer equations given in references 4 to 6 and elsewhere assume a con-
stant Euler number in flow direction, whereas figure 5 shows that a con-
stant nonzero Euler number cannot be obtained with a finite wedge. It
may be deduced, therefore, that for an experimental realization of an
infinite wedge-type pressure gradient, it wouldbe advisable-to adjust
the bounding walls of the tunnel to impose the proper pressure distri-
bution on the test body.

Effect of tunnel-wedge ratio.. - Pressure coefficients for various
tunnel-wedge ratios ranging from about 110 to 2.8 for 13= 20° are
given in figure 6(a) as a function of the chordwise location. To tidi-
cate better the influence of tunnel-wedge ratio, a cross plot of

—
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figure 6(a) was -e in figure 6(b). For decreasing
pressure coefficient decreases for all x/L shown.
where the influence on Cp,i is small is seen to be

NACA TN 2942

values of is/b the
.

The region of a/b
of the order of 100 ~

or more, at least for the incompressibleflo_Wconsidered here. For the ~
tunnel-wedge ratio of the current e~riments, a/b = 2.8, the wall prox-

ul

imity has a decided.influence on the pressure coefficient.

The effect of the tunnel-wedge ratio on the Euler number distribu-
tion for a 20° wedge is given in figure 7. The Euler number decreases -.

with increasing tunnel-wedge ratio.. The slope of the Ner nmiber curve
near the leading edge decreases quite markedly for appreciable tunnel-
wedge ratiosj hence conditions here more closely approximate those “for

—

an Infinite wedge. —.

Heat transfer. - Predictions of heat transfer to a 30° wedge with a
tunnel-wedge ratio of 2.83 were made using the methods of reference 7
for en impermeable wall with small temperature differences. The results
are shown in figure 8, where Hu/& is plotted against the chordwise

location. Curves 1, 2, and 4 show the effect of using different methods
for heat-transfer prediction. Curves 2 and 3, which were obtainedby
the ssme heat-transfer method, show the effect of using different pres-
sure distributions. The experimental pressure distribution for the test
configuration will be given later. It shouldbe emphasized that all the . -
curves shown on figure 8 are theoretical, since no heat-transfer data
were obtained in the present tivestigation.

Of the different heat-trans?er methods utilized in figure 8, the
equivalent wedge-type method is considered tg be the best-means of pre-
dieting heat-transfer results (ref. 7). Curve 2 in figure 8 will there-
fore be used as the criterion. A comparison of curves 1 and 2 shows
that the equivalent infinite wedge and the equivalent wedge-type methods
predict practically the same results for O<X/LsO.3, but as x/L
increases from 0.3 the deviation between curves 1 and 2 becomes greater.
Curve 4, calculatedly the infinite wedge, constant Euler number method,
differs from the criterion, curve 2, by 8 percent at x/L of 0.3 and
22 percent at 0.8. It maybe concluded, therefore, that close to the
leading edge of the body (x/L s0.3), use of either of the equivalent
methods gives the same results, at least for the impermeable wall case.
Aft of the leading-edge region, the equivalent wedge-type method should
be used.

Curves 2 and 3, which use theoretical and experimental pressure dis-
tributions, respectively, and the equivalent-wedge type heat-transfer
method show curve 3 deviating from curve 2 by about 6 percent at x/L
of 0.3 end 9 percent at 0.8. This deviation is believed to be due mainly “
to the influence of separation on the experimental pressure distribution.
For regions where separation is less influential (x/L ~0.3), the use of
the theoretical pressure distribution should be satisfactory if accu-

.

racies in heat-transfer predictions of-the order of 5 percent are
tolerable. ,—.
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Experimental

Flow visualization.. - The results of the flow visualization studies
for the test wedge at an u.stresnlMach number of 0.410 are shown in fig-
ure 9. The support rod and pressure leads on the wedge are also visible.
To exhibit better the effect of the flow on the paint, figure 9(a) shows
the wedge after painting before insertion in the tunnel. The photograph
in figure 9(b) was taken after the visualization run was made and the dark
traces of the hydrogen sulfide which emanated from the static-pressure
taps maybe seen. Note that the trace on the wall followed the wedge
contour very well and there is no apparent tendency for any secondary
flow. This is also borne out in the front view of the wedge in fig-
ure 9(c). Here it cm also be seen that the flow causes the paint to
form ridges (white) parallel to the side wall, confirming the two-
dimensionality of the flow.

Pressure distribution. - The experimental pressure distributions
obtained from the 300 wedge for a tunnel-wedge ratio of 2.8 are shown in
figure 10 for different upstresmhiach numbers along with the theoretical
pressure coefficients obtained from equation (10) for ~ = O and from

equation (21) for M. ~ O. The trends of the experimental data regarding

effects of chordwise location and compressibility on the pressure coef-
ficient follow those predicted theoretically. me absolute vtiues, how-
ever, are consistently greater thsn predicted. This effect is probably
attributable to the influence of the trailing-edge separation on the
wedge pressure distribution. Close to the leading edge, where the influ-
ence of separation should be smsll, the deviation between theory and
experiment is relatively slight. Similar influences on the pressure dis-
tribution due to separation from cylindrical bodies are noted and dis-
cussed in reference 18.

From the experimental pressure coefficients C= for the Iwest test

Mach number ~ = 0.266, the incompressiblepressur~ coefficients Cp,i

maybe calculated by the K&n&-Tsien method eq. (21)). Then these
vslues Of Cp,i may be inserted in equation [21) and ~ assigned the

vslue 0.464, and new pressure coefficients calculated for comparison with
the data at this Mach number. The pressure coefficients so obtained are
givenby the dashed line in figure 10. It is seen that the dashed l~e
yields smaller numerical values of

Cq
than the experimental.data for

~ .0.464, probably because the K&man-Tsien formula is strictly appli-

cable only for an unbounded stream, whereas the proximity of the tunnel
wall in ths expertient increases the influence of compressibility.

.
The Ka&n&n-Tsien formula corrects the pressure coefficient for dis-

turbances causedby the body in the flow field. For the case of small
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tunnel-wedge ratio, however, an additional correction is needed for the
change in flow area. The effects of area change may be estimatedby tie
of equation (3.26) of reference 14. Because the area change is of smaller
order oflmagnitude than the disturbances for most investigations, a
detailed examination of this method was not-made for the present expe~-
iments.

Experimental Mach number distributions.for various wedges are given
in reference 1 for the trsmonic speed rau~e and large tunnel-wedge
ratios. Experimental pressure coefficients maybe calculated from these
data with equation (lb). For the tunnel-wedge ratios used in the exper-
iments (see table”II), theoretical pressure coefficients and chordwise
locations maybe computed for incompressibleflowby equations (10) and
(12) (bounded stream) and extended to compressible flow by equation (21)j
or, since the tunnel-wedge ratio is lsrge, equation (17) (unbounded
stream) may be used for the incompressible solution. Results of calcu-
lations using equations (10) and (12) are presented in figure 4. Theo-
retical pressure coefficients may also be calculated by equation (lc),
the chordwise location then being givenby equation (23) or (24) when
the tabulated values of the Bessel functions in reference 15 are used.
Hereinafter use of equations (10) and (12) (from Schwarz-Christoffel
mapping theorem) in conjunction with equation (21) will be designated{
the mapping - KT(K&m&-Tsien) method; use of equation (22) willbe
defined as the linearized methodj and use 01 equations (23) and (24)
will be called the hodograph method.

The experimental pressure coefficients calculated frcm the results
of reference 1 for wedge angles of 90 “and15° and an upstream Mach num-
ber of 0.824 are shown in figure n(a). The point of zero pressure
coefficient moves downstream with increasing wedge angle, as was shown
analytically h figure 4(a). The experimental shift in chordwise loca-
tion of this point due to an angle increase from 9° to 15° is about

7+ percent-from figure n(a), whereas the predicted shift from fig-

ure 4(a) would be about 7 percent. The locations of the points or zero
pressure coefficient shown in figures 4(a) and n(a) differ, however,
because of the influence of upstream Mach nuniber.

The experimental results Yor a-wedge angle of 20° aud an upstream
Mach number of 0.700 are coqpared with the .theoreticaJlinearized,
mapping-~, and hodograph methods h figure n(b). This figure indicates
that the mapping-K!I!method agrees best with experiment for this wedge
angle and upstream Mach nuniber. It is to be expected that the mapping
method would be better thsm the linearized method, since the mapping
method considers the influence of the wedge angle.on the pressure coef-
ficient whereas the linearized method does not. The hodograph method,
which provides the most accurate%heoretical computation, should also

.

.

-h
a
c
u
.-.-

—.

.

——..

.

.
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.
be in good agreement with experiment. The fact that the experimental
values fall below those predicted by the hodograph method is possibly due

. to compensating effects involving the influence of viscosity ad the sub-
sequent formation of boundary layer. (Qualitative discussion of
boundary layer influence on wedge pressure distribution is given in
ref. 16.) The boundary layer would tend to make the experimental wedge
act roughly as a wedge with a slightly larger ~gle than the geometric
wedge, and from figure 4(a) it can he seen that this would tend to
decrease the pressure coefficient over the rear part of the wedge. Since
the mapping-KT method here predicts lower values of

CP
than does the

hodograph method, the experimental data are in somewhat better agreement
with the mapping-KT me,thodthan with the hodograph method. It appears
therefore that the mapping-KT method, which is easier to apply than the
hodograph method, maybe used to obtain wedge pressure distributions at
least for ~<0.7 snd 0<20°.

Only the hodograph method, however, is in good agreement with
experiment for Mach numbers close to unity, as may be seen in fig-
ure n(c) for ~ = 0.892. Near the leading edge, where the local Mach

number is small, the mapping-~ and ltiearized methods are in good
agreement with experiment. The hodograph method is lower than experi-
ment because at the leading edge (M = O) the hodogaph method yields
Cp = 0.662 by equation (lc). For the mapping-KT method, Cp = 1.378 by

equations (la) and (21). A pressure coefficient of unity is obtained.
from equation (lb) by setting M = O md using the first two terms of a

~

(
Zy-l

binomial expansion of ~ + Y-1

)
2%” For the linearized methcd, equa-

tion (22), Cp is asymptotic to the ordinate at x/L = O.

Aft of the leading-edge region, the linearized and mapping-KT
methods do not properly predict the influence of the upstream Mach number.
The hodograph method, on the other hand, is in good agreement with exper-
iment over most of the wedge.

—

SUMMAKY OF RESULTS

The results of an analytical snd experimental investigation of the
pressure distribution about wedges in bounded and unbounded subsonic
streams are as follows:

. 1. The analytical solutions showed that, to properly estimate the
wedge pressure coefficient, it is necessary to make a detailed examination
of the flow with due consideration to the relative chordwise location,

. wedge angle, tunnel-wedge ratio, and upstream Mach number.
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2. It was found from the analytical results for an unbounded stream
.

that the region of applicability of the infinite wedge-type velocity
distribution assumed in the solution of larninm boundary layer equations “ .
is approximated only within 10 percent for-a limited region near the
leading edge. For tunnel-wedge ratios of the order of 5 or less (bounded
stresm), the infinite wedge-type velocity distribution is realized-only ~~
at the leading edge. g

3. Predictions of heat transfer to a 30° wedge with small tunnel- 8

wedge ratio (2.8) showed that use of the theoretical pressure distribu-
.

tion rather than of the experimental maybe satisfactory if the desired
accuracy in the heat transfer is of the order of 5 percent and the region
is not markedly influenced by flow separation.

—.,

4. The experimental pressure coefficients for the two-dimensional
flow over the 30° wedge with a tunnel-wedge ratio of 2.8 were not in good
agreement with the theory for a finite wedge in a bounded stream, prob-
ably because of the influence of flow sepa~ation on the experimental
results.

,-

5. Comparison of previously published experimental results and
theory in the high subsonic region for large tunnel-wedge ratios (greater
than 100) indicated that the simple mapping K&@n-Tsien method was in .

good agreement with experiment for wedge angles from 9° to 20° smd
.-

upstream Mach nunibersto 0.700. For Mach nunibersof the order of 0.900
—

and a wedge eagle of 20°, the hodograph method was in better agreement .

with experiment then either the mapping or linearized methods.

Lewis Flight-Propulsion Laboratory
Nation&i_Advisory Comnittee for Aeronautics

Cleveland, Ohio, January 6, 1953
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.
APPENDIX - SYMBOLS

. The following symbols are used h this report:

21

A,B,C,D, points on fig. 2
E,F

a tunnel height
nJ
8
CJl b maximum wedge thickness

CP
pressure coefficient, Cp

~ PoP-

2
po Uo
-

2

c constant of proporticmality, eq. (3)

Eu

.

H

L

2

M

m

N

. Nu

n
.

dp
‘x G

Euler number, Eu ~ ~
pu”

heat-transfer coefficient

width of interval in finite

modified Bessel function of

modified Bessel function of

thermal conductivity

length of wedge surface

length of afterbody

Mach number, U/-

exponent in eq. (3)

difference integration, eq. (13)

first kind of order p

second kind of order p

3

function of Mach numiber,N =
2Z

2/3(1-M)

Nusselt number, HL/k

nmber of intervals advanced from initial value in finite
difference integration, eq. (13)
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P

P’

R

Reo

r

s

s

T

T’

t

u

v

w

x

Y

z

a

static pressure

total-pressure
.-

gas constant

Uop L
Reynolds number,

P

swmnation index, eqs. (23) and (24)

constant in transformation for finite wedge in bounded

NACA TN 2942

.
—

—
●

�

stream, S = ~
2Tt

constant in transformation
stream, eq. (16)

static temperature

total temperature

constant in traw.formation
211

velocity

function of wedge single,v

complex potential

for finite wedge in unbounded

for–finite wedge in bounded

)-+1.~
‘T

. .

distance along wedge surface meas~ed from leading edge

spanwise distance on wedge surface
-.

complex variable of physical plane

real component of ~

ratio of specific heats, T = 1.4

finite difference operator

complex variable of transformed plane

.-—

r.

.

—

.

.
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e

. P

P

Subscripts:

wedge opening angle

absolute viscosity of fluid

density of fluid

condition upstream of body

incompressible

initial value infinite difference inte~ation, eq. {13)

real root

undisturbed region, upstream or downstream of wedge
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.
TABLE I. - GEOMETRY ANR PRESSURE TAP LOCATIONS

● FOR 30° WEDGE

n
~ [ml dimensions are in inches~

J

.

.

.

.

T
1.06

1

Pressure tap
locations

Y x

Lower surface

2.42
2.42
2.42
2.42
2.42
2.38
1.45
1.45
1.45
1.45
.48
.48
.48
.48
.48
.48

0.37
.75

1.08
1.27
1.53
1.92
.49
.88

1.40
1.66
.37
.75

1.08
1.27
1.53
1.92

Upper surface

2.42
2.42
1.45
1.50
.48
.48

0.37
.75
.49
,88
.37
.75

25
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TABIE II. - THEORETICAL PRESSURE COEFFICIJ3NTSFOR

FINITE WEDGES IN UNBOUNDED, INCOMPRESSIBLE STREAMS

TN 2942

.

.

CALCULATED BY EQUATIONS (16) ~ (17)

[a/b =m; ~= O]
—

x/L Cp,i

e = 9°; s/L = 0.5008

0 ● 0000
.0338
.0555
.2651
.4687
.5189
.5688
.7660
.9104
.9592

1.0000

e = 150; s

o ●0000
.0304
.0591
.2747
.4800
.5301
● 5799
.7746
.9150
.9599

1,0000

Q = 300; s

0.0000
.0367
.0629
.2994
.4575
.5583
.7499
.8838
.9661

1.0000

1.0000
.1595
.1369
●0535
.0100
.0000

-.0100
-.0566
-.IJ62
-.1586
-e

L = cR4997

1.0000
.2631
.2175
.0874
.0165
.0000

-.0169
-.0958
-.2010
-.2780
-m

L= o ●4955

1,0000
,4570
.3991
.1673
.0653
.0000

-.1518
-.3352
-.6335
-a

x/L CPJ

Q = 20°; 6/L = 0.4986

0.0000
.0385
.0623
.2830
.4896
.5397
.5892
.7346
.9189
.9622

1.0000

e = “400;s,

0.0000
.0697
.2611
.4772
.5775
.7651
.8932
.9697

1.0000

1.0000
.3204
.2790
,1149
.0221
.0000

-.0225
-.0987
-.2764
-.3870
-m

J = 0.4907

1.0000
.4928
.2651
.0862
● 0000

-.2071
-.4704
-.9238
-Ca

—

—.

.
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